Formalizing Unstable Quasinormal Modes and
the Quantum Black Hole Bomb in Lean 4

Naoki Takata

January 12, 2026

Abstract

We present a formal verification of the exponential growth of unstable quasinormal modes
in the context of quantum-induced superradiance using the Lean 4 proof assistant and the
Mathlib library. The formalization rigorously defines the concept of an unstable mode as one
with a positive imaginary part of its complex frequency, proves that such modes exhibit expo-
nential growth in time, and establishes the mathematical foundation for the quantum black
hole bomb phenomenon. All proofs are machine-checked, ensuring complete mathematical
rigor.

1 Introduction

Superradiance is a fundamental phenomenon in black hole physics where bosonic fields can
extract rotational energy from a rotating black hole. When the frequency w of an incident wave
satisfies w < mp, where m is the azimuthal quantum number and Q is the angular velocity
of the horizon, the reflected wave is amplified [I].

The black hole bomb mechanism, first proposed by Press and Teukolsky [2], occurs when
superradiant amplification is combined with a confining mechanism that reflects the amplified
waves back toward the black hole, creating an exponentially growing instability. In the quantum
context, massive bosonic fields provide a natural confining mechanism through their Compton
wavelength.

1.1 Quasinormal Modes

Quasinormal modes (QNMs) are the characteristic oscillation modes of black holes. They are
characterized by complex frequencies w = wg + iwy, where:

e wp is the oscillation frequency,

e w; determines the growth or decay rate.

The time evolution of a mode is given by e~ which can be written as:

et _ efz(wRJrzwI)t — Wit | p—iwRt (1)

When w; > 0, the mode amplitude grows exponentially in time—this is the signature of an
instability.

1.2 Motivation for Formalization

Formal verification of physical and mathematical results provides several benefits:

1. Rigor: Machine-checked proofs eliminate any possibility of error.



2. Clarity: The formalization process forces precise definitions.
3. Reproducibility: The proof can be independently verified by anyone.

In this paper, we present a complete Lean 4 formalization of the key mathematical results
underlying the quantum black hole bomb phenomenon.

2 Mathematical Framework

2.1 Mode Evolution

Definition 2.1 (Mode Evolution). Given a complex frequency w € C and time t € R, the mode
evolution is defined as

Y(t) = e, )

Definition 2.2 (Unstable Mode). A mode with complex frequency w is called unstable if the
imaginary part of w is positive:
wr = Im(w) > 0. (3)

2.2 Growth of Unstable Modes

Theorem 2.3 (Magnitude of Mode Evolution). For any complex frequency w € C and time
t € R, the magnitude of the mode evolution is given by

|6—iwt| — 6w1t, (4)
where wy = Im(w).
Proof. Writing w = wpr + iwy, we have
—iw = —iwgR + wr, (5)
—iwt = wrt — iwgt. (6)
Therefore,
e—iwt — ewIt . e—’int. (7)

Taking the absolute value and using |¢®| = 1 for real 6:
|e—iwt‘ — |ew1t| X |6_int‘ — ew;t 1= 6w1t. (8)
O

Theorem 2.4 (Instability Implies Growth). If w is an unstable mode (i.e., wy > 0) and t > 0,
then ‘
e > 1. 9)

Proof. By Theorem le=™t = ewrt, Since w; > 0 and t > 0, we have w;t > 0, and thus
ewrt > el =1, O



2.3 Quasinormal Mode Spectrum

In the context of black hole perturbation theory, the quasinormal frequencies form a discrete
spectrum labeled by quantum numbers.

Definition 2.5 (Quasinormal Frequency Spectrum). A quasinormal frequency spectrum is a
function

w:NxNxZ—C, (10)

where the arguments (n, [, m) represent the overtone number, angular momentum quantum num-
ber, and azimuthal quantum number, respectively.

Definition 2.6 (Existence of Unstable Mode). A quasinormal frequency spectrum has an un-
stable mode if there exist quantum numbers (n, [, m) such that

Im(wn717m) > 0. (11)

2.4 The Quantum Black Hole Bomb

Definition 2.7 (Quantum Black Hole Bomb). A system is a quantum black hole bomb if its
quasinormal frequency spectrum has at least one unstable mode.

Theorem 2.8 (Quantum Black Hole Bomb Growth). If a system is a quantum black hole bomb,
then there exist quantum numbers (n,l,m) and a time t > 0 such that the corresponding mode

exhibits exponential growth:
|le”Wntmt] > 1, (12)

Proof. By definition, there exist (n,l,m) with Im(wy, ;) > 0. Taking t = 1 > 0 and applying
Theorem we obtain |e”®ntml| > 1, O

3 Formalization in Lean 4

We now present the complete Lean 4 formalization of the above results. The formalization uses
Lean 4.24.0 and Mathlib (commit £897ebcf).

3.1 Basic Definitions
Definition 3.1 (Unstable Mode in Lean). The predicate for an unstable mode is defined as:
def is_unstable ( : ) : Prop := 0 < .im
Definition 3.2 (Mode Evolution in Lean). The mode evolution function is defined as:
noncomputable def mode_evolution ( : ) (t : ) : :=
Complex.exp (-Complex.I * * (t : ))
3.2 Main Theorems
Theorem 3.3 (Instability Implies Growth in Lean). The formal statement and proof:

theorem instability_implies_growth ( : ) (¢t : )
(b : is_unstable ) (ht : 0 < t)
1 < [mode_evolution tl := by
unfold is_unstable at h
unfold mode_evolution
norm_num [Complex.norm_exp]
positivity



Remark 3.4. The proof uses Mathlib’s positivity tactic, which automatically handles positivity
arguments. The key insight is that [|e?|| = eR°(*) for complex z, and here Re(—iwt) = wyt > 0.

Theorem 3.5 (Mode Growth Magnitude in Lean). The exact growth factor is formalized as:

theorem mode_growth_magnitude ( : ) (t : ) :
Imode_evolution tll = Real.exp (.im * t) := by
norm_num [mode_evolution, Complex.norm_exp]

3.3 Quasinormal Modes and Black Hole Bomb

Definition 3.6 (Has Unstable Mode in Lean). def has_unstable_mode (quasinormal_frequency : -
n lm, O< (quasinormal_frequency n 1 m).im

Definition 3.7 (Quantum Black Hole Bomb in Lean). def is_quantum_black_hole_bomb
(quasinormal_frequency : =+ =+ = ) : Prop :=
has_unstable_mode quasinormal_frequency

Theorem 3.8 (Quantum Black Hole Bomb Growth in Lean). theorem quantum_black_hole_bomb_growth
(quasinormal_frequency : =+ =+ =)
(h : is_quantum_black_hole_bomb quasinormal_frequency)
nlmt, 0<t
1 < [mode_evolution (quasinormal_frequency n 1 m) t| := by
exact h.imp fun n hn => hn.imp fun 1 hl => hl.imp fun m hm =>
{1, by norm_num, by simpa using
instability_implies_growth (quasinormal_frequency n 1 m) 1 hm
(by norm_num))

3.4 Verification

Theorem 3.9 (Compilation Success). The complete formalization compiles without errors in
Lean 4.24.0 with Mathlib.

Proof. Running lake env lean on the source file produces no errors, confirming that all type
checking and proof verification succeeds. O

4 Summary of Formalized Results

Name Type Description

is_unstable Definition wy; >0

mode_evolution Definition —e~**
instability_implies_growth Theorem  w; >0At>0= e ™ > 1
mode_growth_magnitude Theorem  |e~ ™! = ewrt
has_unstable_mode Definition dn,l,m :w; >0
is_quantum_black_hole_bomb Definition System with unstable mode

quantum_black_hole_bomb_growth Theorem  Bomb = exponential growth

Table 1: Summary of formalized definitions and theorems



5

Physical Implications

The formalized results have important physical implications for the study of black hole superra-
diance:

1. Superradiant Instability: When a massive bosonic field (such as an ultralight axion)

6

surrounds a rotating black hole, bound states can form with w; > 0, leading to exponential
extraction of angular momentum from the black hole.

. Gravitational Wave Signatures: The growing mode eventually saturates through grav-

itational wave emission, providing a potential observational signature [3].

Constraints on New Physics: The absence of observed superradiant instabilities places
constraints on the existence of ultralight bosons [4].

Conclusion

We have presented a complete, machine-verified formalization of the mathematical foundations
of the quantum black hole bomb phenomenon in Lean 4. The key results are:

e An unstable quasinormal mode (with w; > 0) grows exponentially in time.
e The magnitude of the mode evolution is exactly e*t.

e The existence of any unstable mode in the quasinormal spectrum implies exponential

growth of perturbations.

All proofs have been verified by the Lean type checker, providing the highest level of mathe-

matical certainty..
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