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Abstract

We prove that, assuming the ABC conjecture, the set of natural numbers n such that
2n+1 is a powerful number is finite, and similarly for 2n−1. The proof relies on constructing
ABC triples from powerful numbers and applying the radical bound implied by the ABC
conjecture.

1 Introduction

A natural number n is called powerful if for every prime p dividing n, the square p2 also divides
n. Equivalently, n is powerful if and only if n can be written as n = a2b3 for some positive
integers a and b. The study of powerful numbers has connections to various areas of number
theory, including the distribution of squarefree numbers and the ABC conjecture.

In this paper, we investigate the occurrence of powerful numbers among integers of the form
2n + 1 and 2n − 1. Our main result shows that, conditional on the ABC conjecture, there are
only finitely many such n.

2 Definitions and Preliminaries

Definition 2.1 (Powerful Number). A natural number n ≥ 1 is powerful if for every prime p,

p | n =⇒ p2 | n.

We denote this property by Powerful(n).

Definition 2.2 (Radical). For a natural number n ≥ 1, the radical of n, denoted rad(n), is the
product of the distinct prime factors of n:

rad(n) =
∏
p|n

p prime

p.

We set rad(1) = 1.

Definition 2.3 (ABC Conjecture). The ABC conjecture states that for every ε > 0, the set{
(a, b, c) ∈ N3

∣∣∣∣ a, b, c > 0, gcd(a, b) = 1,
a+ b = c, c > rad(abc)1+ε

}
is finite.
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3 Key Lemmas

Lemma 3.1 (Radical Bound for Powerful Numbers). Let n ≥ 1 be a powerful number. Then

rad(n)2 ≤ n.

Proof. Let n =
∏k

i=1 p
ai
i be the prime factorization of n, where p1, . . . , pk are distinct primes and

ai ≥ 1 for all i. Since n is powerful, we have ai ≥ 2 for all i.
The radical of n is

rad(n) =
k∏

i=1

pi.

Therefore,

rad(n)2 =
k∏

i=1

p2i .

Since ai ≥ 2 for all i, we have p2i | p
ai
i for each i. Thus,

k∏
i=1

p2i

∣∣∣∣ k∏
i=1

paii = n.

In particular, rad(n)2 ≤ n.

Lemma 3.2 (Radical of Coprime Product). Let a, b ≥ 1 be coprime natural numbers, i.e.,
gcd(a, b) = 1. Then

rad(ab) = rad(a) · rad(b).

Proof. Since gcd(a, b) = 1, the sets of prime factors of a and b are disjoint. Therefore,

rad(ab) =
∏
p|ab

p prime

p =
∏
p|a

p prime

p ·
∏
p|b

p prime

p = rad(a) · rad(b).

Lemma 3.3 (Radical of Powers of Two). For any n ≥ 1,

rad(2n) = 2.

Proof. The only prime factor of 2n is 2, so rad(2n) = 2.

4 Main Results

4.1 The Case 2n + 1

Lemma 4.1. Let n ≥ 0 and suppose 2n + 1 is powerful. Then

rad(2n · (2n + 1))2 ≤ 4(2n + 1).

Proof. Since gcd(2n, 2n + 1) = 1, by Lemma 3.2,

rad(2n · (2n + 1)) = rad(2n) · rad(2n + 1) = 2 · rad(2n + 1).

By Lemma 3.1, since 2n + 1 is powerful,

rad(2n + 1)2 ≤ 2n + 1.

Therefore,
rad(2n · (2n + 1))2 = 4 · rad(2n + 1)2 ≤ 4(2n + 1).
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Proposition 4.2. Let n ≥ 3 and suppose 2n + 1 is powerful. Then

2n + 1 > rad(2n · (2n + 1))6/5.

Proof. By Lemma 4.1,
rad(2n · (2n + 1))2 ≤ 4(2n + 1).

Let x = 2n + 1. For n ≥ 3, we have x ≥ 9. We claim that

(4x)3/5 < x.

Raising both sides to the power of 5, this is equivalent to showing

(4x)3 < x5,

which simplifies to
64x3 < x5,

or equivalently,
64 < x2.

Since x ≥ 9, we have x2 ≥ 81 > 64, so the inequality holds.
Now, since rad(2n · (2n + 1))2 ≤ 4x, we have

rad(2n · (2n + 1)) ≤
√
4x = 2

√
x.

Therefore,
rad(2n · (2n + 1))6/5 ≤ (2

√
x)6/5 = (4x)3/5 < x = 2n + 1.

Theorem 4.3. Assume the ABC conjecture. Then the set

{n ∈ N | 2n + 1 is powerful}

is finite.

Proof. Consider the triple (a, b, c) = (1, 2n, 2n + 1) for n ≥ 3 such that 2n + 1 is powerful. We
verify:

• a, b, c > 0: Clear.

• gcd(a, b) = gcd(1, 2n) = 1: Clear.

• a+ b = 1 + 2n = 2n + 1 = c: Clear.

By Proposition 4.2,

c = 2n + 1 > rad(2n · (2n + 1))6/5 = rad(1 · 2n · (2n + 1))6/5 = rad(abc)1+1/5.

Thus, the triple (1, 2n, 2n + 1) satisfies the ABC exception condition with ε = 1/5.
By the ABC conjecture, there are only finitely many such triples. Since the map n 7→

(1, 2n, 2n + 1) is injective, there are only finitely many n ≥ 3 with 2n + 1 powerful.
Together with the finitely many n < 3, the set of all n such that 2n+1 is powerful is finite.
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4.2 The Case 2n − 1

Lemma 4.4. Let n ≥ 1 and suppose 2n − 1 is powerful. Then

rad(2n · (2n − 1))2 ≤ 4(2n − 1).

Proof. Since gcd(2n, 2n − 1) = 1, by Lemma 3.2,

rad(2n · (2n − 1)) = rad(2n) · rad(2n − 1) = 2 · rad(2n − 1).

By Lemma 3.1, since 2n − 1 is powerful,

rad(2n − 1)2 ≤ 2n − 1.

Therefore,
rad(2n · (2n − 1))2 = 4 · rad(2n − 1)2 ≤ 4(2n − 1).

Proposition 4.5. Let n > 3 and suppose 2n − 1 is powerful. Then

2n > rad(2n · (2n − 1))6/5.

Proof. By Lemma 4.4,
rad(2n · (2n − 1)) ≤ 2

√
2n − 1.

We claim that for n > 3,
2n > (2

√
2n − 1)6/5.

Raising both sides to the power of 5, this is equivalent to

25n > (2
√
2n − 1)6 = 64(2n − 1)3.

Let y = 2n. We need to show y5 > 64(y − 1)3 for y ≥ 16 (i.e., n ≥ 4).
For y ≥ 16:

y5

(y − 1)3
= y2 · y3

(y − 1)3
= y2 ·

(
y

y − 1

)3

.

Since y/(y − 1) > 1 and y2 ≥ 256 for y ≥ 16, we have

y5

(y − 1)3
> y2 ≥ 256 > 64.

Thus y5 > 64(y − 1)3, which gives us

2n > rad(2n · (2n − 1))6/5.

Theorem 4.6. Assume the ABC conjecture. Then the set

{n ∈ N | 2n − 1 is powerful}

is finite.

Proof. Consider the triple (a, b, c) = (1, 2n − 1, 2n) for n > 3 such that 2n − 1 is powerful. We
verify:

• a, b, c > 0: Clear for n ≥ 1.
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• gcd(a, b) = gcd(1, 2n − 1) = 1: Clear.

• a+ b = 1 + (2n − 1) = 2n = c: Clear.

By Proposition 4.5,

c = 2n > rad(2n · (2n − 1))6/5 = rad(1 · (2n − 1) · 2n)6/5 = rad(abc)1+1/5.

Thus, the triple (1, 2n − 1, 2n) satisfies the ABC exception condition with ε = 1/5.
By the ABC conjecture, there are only finitely many such triples. Since the map n 7→

(1, 2n − 1, 2n) is injective, there are only finitely many n > 3 with 2n − 1 powerful.
Together with the finitely many n ≤ 3, the set of all n such that 2n − 1 is finite.

5 Conclusion

We have established the following results:

Corollary 5.1. Assuming the ABC conjecture:

1. The set {n ∈ N | 2n + 1 is powerful} is finite.

2. The set {n ∈ N | 2n − 1 is powerful} is finite.

These results demonstrate the power of the ABC conjecture in establishing finiteness results
for Diophantine problems. The key insight is that powerful numbers have small radicals relative
to their size, which creates ABC “hits” when combined with the exponential growth of 2n.

Remark 5.2. The proofs use ε = 1/5 in the ABC conjecture. Any ε < 1/2 would suffice, since
the essential inequality is rad(n)2 ≤ n for powerful n.
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