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Abstract

We prove that, assuming the ABC conjecture, the set of natural numbers n such that
2" 41 is a powerful number is finite, and similarly for 2" —1. The proof relies on constructing
ABC triples from powerful numbers and applying the radical bound implied by the ABC
conjecture.

1 Introduction

A natural number n is called powerful if for every prime p dividing n, the square p? also divides
n. Equivalently, n is powerful if and only if n can be written as n = a?b? for some positive
integers a and b. The study of powerful numbers has connections to various areas of number
theory, including the distribution of squarefree numbers and the ABC conjecture.

In this paper, we investigate the occurrence of powerful numbers among integers of the form
2" + 1 and 2™ — 1. Our main result shows that, conditional on the ABC conjecture, there are
only finitely many such n.

2 Definitions and Preliminaries
Definition 2.1 (Powerful Number). A natural number n > 1 is powerful if for every prime p,
pln = p*|n.

We denote this property by Powerful(n).

Definition 2.2 (Radical). For a natural number n > 1, the radical of n, denoted rad(n), is the
product of the distinct prime factors of n:

rad(n) = H .

pn
p prime

We set rad(1) = 1.

Definition 2.3 (ABC Conjecture). The ABC conjecture states that for every e > 0, the set

{(a,b, c) e N3

a,b,c>0, ged(a,b) =1,
a+b=c, c>rad(abc)lte

is finite.



3 Key Lemmas

Lemma 3.1 (Radical Bound for Powerful Numbers). Let n > 1 be a powerful number. Then

rad(n)? < n.

Proof. Let n = Hle p;* be the prime factorization of n, where p1, ...

a; > 1 for all 4. Since n is powerful, we have a; > 2 for all 4.
The radical of n is

k
rad(n) = Hpi.
i=1
Therefore,

k
rad(n)? = Hp?
i=1

Since a; > 2 for all 4, we have p% | pj* for each 4. Thus,

k
ai _
p;t =mn.
=1

k

[1#:

=1

In particular, rad(n)? < n.

, pi. are distinct primes and

O

Lemma 3.2 (Radical of Coprime Product). Let a,b > 1 be coprime natural numbers, i.e.,

ged(a,b) = 1. Then
rad(ab) = rad(a) - rad(b).

Proof. Since ged(a,b) = 1, the sets of prime factors of a and b are disjoint. Therefore,

rad(ab) = H p= H p- H p =rad(a) - rad(b).

plab pla plb
p prime p prime p prime

Lemma 3.3 (Radical of Powers of Two). For anyn > 1,
rad(2") = 2.

Proof. The only prime factor of 2" is 2, so rad(2") = 2.

4 Main Results

4.1 The Case 2" +1

Lemma 4.1. Let n > 0 and suppose 2" + 1 is powerful. Then
rad(2" - (2" +1))% < 4(2" 4 1).

Proof. Since ged(2",2" 4+ 1) = 1, by Lemma [3.2]

rad(2" - (2" + 1)) =rad(2") -rad(2" + 1) = 2 - rad(2" + 1).

By Lemma since 2" + 1 is powerful,
rad(2" +1)% < 2" + 1.

Therefore,

rad(2”- (2" +1))2 =4 -rad(2" + 1)2 < 4(2" 4 1).



Proposition 4.2. Let n > 3 and suppose 2" + 1 is powerful. Then
2" 41> rad(2" - (2" 4 1))9/°.
Proof. By Lemma [4.1
rad(2" - (2" +1))% < 4(2" + 1).
Let x = 2" 4+ 1. For n > 3, we have x > 9. We claim that

(42)3/° < .

Raising both sides to the power of 5, this is equivalent to showing

(42)® < 2°,
which simplifies to
64x3 < 2°,
or equivalently,
64 < 22,

Since & > 9, we have 2 > 81 > 64, so the inequality holds.
Now, since rad(2" - (2" + 1))? < 4z, we have

rad(2" - (2" + 1)) < Vdz = 21/

Therefore,
rad(2" - (2" +1))%° < (2v2)%° = (42)%/° <z =27 + 1.

Theorem 4.3. Assume the ABC conjecture. Then the set
{n e N|2" 4+ 1 is powerful}
1s finite.

Proof. Consider the triple (a,b,c¢) = (1,2",2" 4+ 1) for n > 3 such that 2" 4 1 is powerful. We
verify:

e a,b,c > 0: Clear.
e gcd(a,b) = ged(1,2") = 1: Clear.
e a+b=1+2"=2"+1=c: Clear.
By Proposition [£.2]
c=2"+1>rad(2" (2" +1))%° =rad(1- 2" - (2" + 1))%/° = rad(abc)' /",

Thus, the triple (1,2",2" 4 1) satisfies the ABC exception condition with ¢ = 1/5.

By the ABC conjecture, there are only finitely many such triples. Since the map n +—
(1,2™,2™ + 1) is injective, there are only finitely many n > 3 with 2™ + 1 powerful.

Together with the finitely many n < 3, the set of all n such that 2" +1 is powerful is finite. [



4.2 The Case 2" — 1

Lemma 4.4. Let n > 1 and suppose 2" — 1 is powerful. Then
rad(2" - (2" — 1))% < 4(2" — 1).
Proof. Since ged(2™,2™ —1) =1, by Lemma
rad(2" - (2" — 1)) =rad(2") -rad(2" — 1) = 2-rad(2" — 1).
By Lemma since 2" — 1 is powerful,
rad(2" —1)2 < 2" — 1.

Therefore,
rad(2" - (2" — 1)) =4 -rad(2" —1)® <4(2" - 1).

Proposition 4.5. Let n > 3 and suppose 2" — 1 is powerful. Then
2" > rad(2" - (2" — 1))%/°.

Proof. By Lemma [£.4]
rad(2" - (2" — 1)) < 2027 — 1.

We claim that for n > 3,

2" > (2¢/27 —1)5/5.
Raising both sides to the power of 5, this is equivalent to
257 > (227 — 1)8 = 64(2" — 1)3.

Let y = 2". We need to show y® > 64(y — 1)3 for y > 16 (i.e., n > 4).
For y > 16:

5 3 3
y :yz.y:yz.<y>_
(y—1)3 (y—1)° y—1
Since y/(y — 1) > 1 and y? > 256 for y > 16, we have

y5

(y—1)°
Thus y° > 64(y — 1)3, which gives us

> y? > 256 > 64.

2" > rad(2" - (2" — 1))%/°.

Theorem 4.6. Assume the ABC conjecture. Then the set
{n € N|2" —1 is powerful}
1s finite.

Proof. Consider the triple (a,b,c) = (1,2" — 1,2") for n > 3 such that 2" — 1 is powerful. We
verify:

e a,b,c > 0: Clear for n > 1.



e gcd(a,b) = ged(1,2™ — 1) = 1: Clear.
e a+b=1+(2"—-1)=2"=c: Clear.
By Proposition [£.5]
c=2">rad(2" - (2" — 1))%° = rad(1 - (2" — 1) - 2")%/° = rad(abc)' /.

Thus, the triple (1,2" — 1,2") satisfies the ABC exception condition with ¢ = 1/5.

By the ABC conjecture, there are only finitely many such triples. Since the map n —
(1,2™ —1,2™) is injective, there are only finitely many n > 3 with 2™ — 1 powerful.

Together with the finitely many n < 3, the set of all n such that 2" — 1 is finite. O

5 Conclusion

We have established the following results:
Corollary 5.1. Assuming the ABC conjecture:
1. The set {n € N | 2" 4+ 1 is powerful} is finite.
2. The set {n € N | 2" — 1 is powerful} is finite.

These results demonstrate the power of the ABC conjecture in establishing finiteness results
for Diophantine problems. The key insight is that powerful numbers have small radicals relative
to their size, which creates ABC “hits” when combined with the exponential growth of 2.

Remark 5.2. The proofs use e = 1/5 in the ABC conjecture. Any ¢ < 1/2 would suffice, since
the essential inequality is rad(n)? < n for powerful n.

References

[1] D. W. Masser, Open problems, in: Proceedings of the Symposium on Analytic Number The-
ory, London, 1985.

[2] J. Oesterlé, Nouvelles approches du “théoréme” de Fermat, Séminaire Bourbaki, Vol. 1987/88,
Astérisque No. 161-162 (1988), Exp. No. 694, 165-186.

[3] A. Granville and T. J. Tucker, It’s as easy as abc, Notices of the AMS 49 (2002), no. 10,
1224-1231.



	Introduction
	Definitions and Preliminaries
	Key Lemmas
	Main Results
	The Case 2n + 1
	The Case 2n - 1

	Conclusion

