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Abstract
We present a formal mathematical framework for optimal market making strategies, en-

compassing three interconnected models: (1) the Market Making with Alpha Signals model
incorporating predictive signals, (2) the Adverse Selection with Price Reading model, and (3)
the classical Avellaneda-Stoikov model. For each model, we rigorously define the parameter
spaces, derive the Hamilton-Jacobi-Bellman (HJB) equations, and establish the optimal con-
trol formulations. We also present the ansatz for the value function and the optimal quote
adjustment formulas.

1 Introduction

Market making involves continuously providing liquidity by posting bid and ask quotes. The
market maker faces several challenges including inventory risk, adverse selection, and the incor-
poration of predictive signals. This paper formalizes three models that address these challenges
within a unified mathematical framework.

2 Market Making with Alpha Signals

2.1 Parameter Space

Definition 2.1 (Market Parameters). The market making model with alpha signals is charac-
terized by the following parameters:

P =
(
κ, ξ, η+, η−, σ, θ,ΥMO, ψ, ϕ, λ

+, λ−,ΥLO

)
(1)

where:

• κ ∈ R : mean-reversion speed of the alpha signal

• ξ ∈ R : volatility of the alpha signal

• η+, η− ∈ R : jump sizes in alpha upon trade execution

• σ ∈ R : price tick size

• θ ∈ R : baseline intensity of price movements

• ΥMO ∈ R : market order execution cost

• ψ ∈ R : running inventory penalty coefficient

• ϕ ∈ R : quadratic inventory penalty coefficient

• λ+, λ− ∈ R : arrival intensities of buy and sell orders

• ΥLO ∈ R : limit order spread
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2.2 The Quasi-Variational Inequality

Let H : R× R× R× R× Z → R denote the value function, where H(t, x, S, α, q) represents the
expected utility at time t with cash x, mid-price S, alpha signal α, and inventory q.

Definition 2.2 (HJBQVI for Alpha Signal Model). The Hamilton-Jacobi-Bellman Quasi-Variational
Inequality (HJBQVI) is given by:

max
{
A,B, C

}
= 0 (2)

where the continuation operator A is defined as:

A =
∂H

∂t
+
(
(α)+ + θ

)[
H(t, x, S + σ, α, q)−H(t, x, S, α, q)

]
+
(
(−α)+ + θ

)[
H(t, x, S − σ, α, q)−H(t, x, S, α, q)

]
− κα

∂H

∂α
+

1

2
ξ2
∂2H

∂α2
− ϕq2

+ λ+max
{
H
(
t, x+ S +ΥLO, S, α+ η+, q − 1

)
−H(t, x, S, α, q),

H(t, x, S, α+ η+, q)−H(t, x, S, α, q)
}

+ λ−max
{
H
(
t, x− S +ΥLO, S, α− η−, q + 1

)
−H(t, x, S, α, q),

H(t, x, S, α− η−, q)−H(t, x, S, α, q)
}

(3)

The intervention operators B and C are:

B = H
(
t, x+ S −ΥMO, S, α, q − 1

)
−H(t, x, S, α, q) (4)

C = H
(
t, x− S −ΥMO, S, α, q + 1

)
−H(t, x, S, α, q) (5)

Here, (·)+ = max(·, 0) denotes the positive part.

2.3 Ansatz for the Value Function

Proposition 2.1 (Separation of Variables). The value function admits the following ansatz:

H(t, x, S, α, q) = x+ qS + h̃(t, α, q) (6)

where h̃ : R × R × Z → R is the reduced value function that depends only on time, the alpha
signal, and inventory.

3 Adverse Selection Model with Price Reading

3.1 Parameter Space

Definition 3.1 (Adverse Selection Parameters). For a market with N regimes and K order
sizes, the adverse selection model is characterized by:

PAS =
(
ρ, γ, σ, ζ̃, J̃ , w,∆, β,Λb,Λa

)
(7)

where:

• ρ ∈ R : discount rate

• γ ∈ R : risk aversion coefficient
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• σ ∈ R : price volatility

• ζ̃ : {1, . . . , N} × {1, . . . ,K} → R : regime-size dependent signal

• J̃ : {1, . . . , N} → R : regime-dependent cost function

• w : {1, . . . , N} × {1, . . . ,K} → R : weight function

• ∆ : {1, . . . ,K} → R : order size for each tier

• β : {1, . . . , N} × Z× (RK × RK) → R : running payoff function

• Λb,Λa : {1, . . . , N} × {1, . . . ,K} × R → R : fill rate functions

3.2 The Hamiltonian

Definition 3.2 (Hamiltonian for Adverse Selection). For regime n ∈ {1, . . . , N}, inventory
q ∈ Z, and finite difference values pb, pa : {1, . . . ,K} → R, the Hamiltonian is:

H̃n(q, p
b, pa) = sup

δb,δa∈RK

{
βn(q, δ

b, δa)−
K∑
k=1

∆k

[
Λb
n,k(δ

b
k)p

b
k + Λa

n,k(δ
a
k)p

a
k

]}
(8)

3.3 Finite Difference Operators

Definition 3.3 (Finite Difference Operators). For a function ϑ : R → R and step size ∆ > 0:

D+[ϑ](q) =
ϑ(q +∆)− ϑ(q)

∆
(9)

D−[ϑ](q) =
ϑ(q −∆)− ϑ(q)

∆
(10)

For indexed step sizes ∆k, k ∈ {1, . . . ,K}:

D+
k [ϑ](q) =

ϑ(q +∆k)− ϑ(q)

∆k
(11)

D−
k [ϑ](q) =

ϑ(q −∆k)− ϑ(q)

∆k
(12)

3.4 HJB Equation for Adverse Selection

Definition 3.4 (Adverse Selection HJB Equation). The value function ϑ : R → R satisfies:

−ρϑ(q)− 1

2
γσ2q2 +

N∑
n=1

H̃n

(
q,D+

k [ϑ](q), D
−
k [ϑ](q)

)
= 0 (13)

4 Optimal Quote Adjustment

4.1 Extended Parameter Space

Definition 4.1 (Differentiable Parameters). For the perturbation analysis, we extend the pa-
rameter space to include:

Pdiff =
(
ρ, γ, σ, ζ̃, J̃ , w,∆, β,Λb,Λa, c

)
(14)

where ζ̃, J̃ are now differentiable functions of the order flow imbalance, and c : {1, . . . , N} ×
{1, . . . ,K} × R → R is the cost function for quote adjustments.
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4.2 Perturbation Approximation

Definition 4.2 (First-Order Perturbation). The value function admits a perturbation expansion:

ϑε(q) = ϑ0(q) + εf(q) +O(ε2) (15)

where ϑ0 is the zeroth-order solution and f is the first-order correction.

4.3 Optimal Quote Adjustment Formula

Proposition 4.1 (Optimal Quote Adjustment). For regime n, order size tier k, and inventory
q, the optimal bid quote adjustment is:

δb,∗n,k(q; ε) = δb,∗n,k(q; 0) + ε · 1

cn,k(δ
b,∗
n,k)

(
D+

k [f ](q) +
Nn,k(q)

Dn,k(q)

)
(16)

where:

Nn,k(q) = q · wn,k · J̃ ′
n(In(q)) + (q +∆k) ·

∂

∂δ

[
Λb
n,k(δ)ζ̃n,k(δ)

]∣∣∣∣
δ=δb,∗n,k

(17)

Dn,k(q) = ∆k ·
∂Λb

n,k

∂δ

∣∣∣∣
δ=δb,∗n,k

(18)

and the order flow imbalance is:

In(q) =

K∑
j=1

wn,j

(
δa,∗n,j(q)− δb,∗n,j(q)

)
(19)

5 The Avellaneda-Stoikov Model

5.1 Parameter Space

Definition 5.1 (Avellaneda-Stoikov Parameters). The classical Avellaneda-Stoikov model is
characterized by:

PAS =
(
γ, σ,∆, Hb, Ha

)
(20)

where:

• γ ∈ R : risk aversion coefficient

• σ ∈ R : price volatility

• ∆ ∈ R : order size

• Hb, Ha : R → R : Hamiltonian functions for bid and ask sides

5.2 HJB Equation

Definition 5.2 (Avellaneda-Stoikov HJB Equation). The value function θ : R×R → R satisfies:

−∂θ
∂t

(t, q) +
1

2
γσ2q2 −Hb

(
θ(t, q)− θ(t, q +∆)

∆

)
−Ha

(
θ(t, q)− θ(t, q −∆)

∆

)
= 0 (21)

Remark 5.1. The arguments of Hb and Ha represent the marginal values of selling and buying
one unit, respectively. The Hamiltonian functions Hb and Ha typically take the form:

Hb(p) = sup
δb≥0

{
Λb(δb)(δb − p)

}
(22)

Ha(p) = sup
δa≥0

{
Λa(δa)(δa + p)

}
(23)

where Λb,Λa are the fill rate functions.
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6 Conclusion

We have presented a comprehensive formal framework for optimal market making that unifies
three important models in the literature. The Market Making with Alpha Signals model incor-
porates predictive information through the alpha signal process, the Adverse Selection model
accounts for information asymmetry through the order flow, and the Avellaneda-Stoikov model
provides the foundational HJB framework. The formal definitions and equations presented here
have been verified through mechanized proof in the Lean theorem prover.
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