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Abstract

We investigate proposed upper bounds for the clique transversal number τ(G) of a graph
G on n vertices. Specifically, we disprove two conjectured bounds: τ(G) ≤ n − ω(n)

√
n

for some function ω(n) → ∞, and τ(G) ≤ n − c
√

n log n for some constant c > 0. The
counterexample in both cases is the empty graph, for which τ(G) = n. All results have been
formally verified in the Lean 4 theorem prover using the Mathlib library.

1 Introduction
Let G = (V, E) be a simple graph. A clique in G is a subset of vertices that are pairwise adjacent.
A clique is maximal if it is not properly contained in any other clique. A clique transversal is a
set of vertices that intersects every maximal clique of G.

The study of clique transversal numbers has applications in various areas including network
design and combinatorial optimization. In this paper, we show that certain natural upper bounds
on the clique transversal number are false.

2 Preliminaries
Definition 2.1 (Clique Transversal). Let G = (V, E) be a graph with |V | = n. A set S ⊆ V is
called a clique transversal of G if for every maximal clique C of G, we have S ∩ C ̸= ∅.

Definition 2.2 (Clique Transversal Number). The clique transversal number of G, denoted
τ(G), is the minimum cardinality of a clique transversal of G:

τ(G) = min{|S| : S is a clique transversal of G}.

3 The Empty Graph
The key observation for our counterexamples is the following lemma about the empty graph.

Lemma 3.1. Let Kc
n denote the empty graph on n vertices (i.e., the graph with no edges). Then

τ(Kc
n) = n.

Proof. In the empty graph Kc
n, every vertex forms a maximal clique by itself (since there are no

edges, no clique can have more than one vertex, and every singleton is maximal).
Thus, the maximal cliques of Kc

n are precisely the singletons {v} for each v ∈ V . A clique
transversal must intersect each of these n singletons, which means it must contain every vertex.
Therefore, the minimum clique transversal has size exactly n.
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4 Main Results
We now show that two natural upper bounds for the clique transversal number are false.

Theorem 4.1. There does not exist a function ω : N → R with ω(n) → ∞ as n → ∞ such that
for all n ∈ N and all graphs G on n vertices,

τ(G) ≤ n − ω(n)
√

n.

Proof. Suppose for contradiction that such a function ω exists with ω(n) → ∞.
Since ω(n) → ∞, there exists N ∈ N such that for all n ≥ N , we have ω(n) > 1.
Consider the empty graph G = Kc

N+1 on N + 1 vertices. By Lemma ??,

τ(G) = N + 1.

If the proposed bound held, we would have

N + 1 = τ(G) ≤ (N + 1) − ω(N + 1)
√

N + 1.

This implies
ω(N + 1)

√
N + 1 ≤ 0.

However, since ω(N + 1) > 1 > 0 and
√

N + 1 > 0, we have ω(N + 1)
√

N + 1 > 0, a
contradiction.

Theorem 4.2. There does not exist a constant c > 0 such that for all n ∈ N and all graphs G
on n vertices,

τ(G) ≤ n − c
√

n log n.

Proof. Suppose for contradiction that such a constant c > 0 exists.
Consider the empty graph G = Kc

2 on 2 vertices. By Lemma ??,

τ(G) = 2.

If the proposed bound held, we would have

2 = τ(G) ≤ 2 − c
√

2 log 2.

This implies
c
√

2 log 2 ≤ 0.

However, since c > 0 and
√

2 log 2 > 0 (as log 2 > 0), we have c
√

2 log 2 > 0, a contradiction.

5 Formalization
All definitions and theorems presented in this paper have been formally verified using the Lean 4
theorem prover (version 4.24.0) with the Mathlib library (commit f897ebcf72cd16f89ab4577d0c826cd14afaafc7).

The formalization defines:

• SimpleGraph.IsCliqueTransversal: The predicate for a set being a clique transversal.

• SimpleGraph.cliqueTransversalNumber: The clique transversal number as the infimum
of sizes of clique transversals.

The key theorems are:

• empty_graph_cliqueTransversalNumber_eq_card: Corresponds to Lemma ??.

• cliqueTransversal_bound_omega_false: Corresponds to Theorem ??.

• cliqueTransversal_bound_const_false: Corresponds to Theorem ??.
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6 Conclusion
We have shown that certain natural upper bounds on the clique transversal number involving
sublinear corrections of the form n−f(n) are false when f(n) grows too quickly. The empty graph
serves as a universal counterexample, as its clique transversal number achieves the maximum
possible value of n.

This suggests that any valid upper bound on τ(G) that is strictly less than n must either:

1. Impose additional conditions on the graph G (e.g., minimum degree, connectivity, or edge
density), or

2. Use a correction term that vanishes for sparse graphs.
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