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Abstract

We study the divisibility condition asking whether, for each non-negative integer k, there
exists a positive integer n such that the product

∏k
i=0(n − i) divides the central binomial

coefficient
(
2n
n

)
. We formalize this problem in Lean 4 and provide constructive proofs for

k = 0, 1, 2, 3 by exhibiting explicit witnesses: n = 1, 2, 2480, 8178 respectively. To verify the
cases k = 2 and k = 3, we implement an efficient divisibility check based on p-adic valuations
and Legendre’s formula, and prove its correctness. All results have been formally verified in
the Lean 4 proof assistant using the Mathlib library.

1 Introduction

The central binomial coefficients
(
2n
n

)
possess remarkable divisibility properties that have been

studied extensively in combinatorics and number theory. A classical result states that n + 1
always divides

(
2n
n

)
; indeed, the quotient

Cn =
1

n+ 1

(
2n

n

)
is the n-th Catalan number. However, divisibility by n itself is considerably rarer.

Erdős and Graham posed the following natural question:

Conjecture 1.1 (Erdős–Graham). For every non-negative integer k, there exists a positive
integer n > k such that

k∏
i=0

(n− i) |
(
2n

n

)
.

Pomerance [1] made significant progress on related problems. He showed that for any fixed
k ≥ 0, there are infinitely many n such that (n− k) |

(
2n
n

)
, although the set of such n has upper

density less than 1/3. Pomerance also proved that the set of n for which
∏k

i=1(n+ i) |
(
2n
n

)
has

density 1.
The smallest values of n satisfying the divisibility condition for each k are recorded in the

OEIS as sequence A375077 [2].
In this paper, we provide a formal verification of the existence of witnesses for small values

of k, using the Lean 4 proof assistant and the Mathlib library.
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2 The Divisibility Condition

Definition 2.1 (Divisibility Condition). For non-negative integers k and n with n > k, we define
the predicate

divides_prod(k, n) ⇐⇒
k∏

i=0

(n− i) |
(
2n

n

)
.

Remark 2.2. The product
∏k

i=0(n− i) = n(n−1)(n−2) · · · (n−k) is the falling factorial (n)k+1,
which counts the number of ways to arrange k + 1 distinct objects chosen from n objects.
Remark 2.3. For n > k, all factors in the product are positive, so

∏k
i=0(n− i) > 0.

3 Witnesses for Small Values of k

We now present the witnesses that satisfy the divisibility condition for k = 0, 1, 2, 3.

3.1 The Case k = 0

Theorem 3.1. We have divides_prod(0, 1), i.e., 1 |
(
2
1

)
.

Proof. The product
∏0

i=0(1− i) = 1, and 1 divides any integer. This is verified by the one_dvd
lemma in Lean.

3.2 The Case k = 1

Theorem 3.2. We have divides_prod(1, 2), i.e., 2 · 1 |
(
4
2

)
.

Proof. The product is
∏1

i=0(2− i) = 2 · 1 = 2. The central binomial coefficient is
(
4
2

)
= 6. Since

6 = 2 · 3, we have 2 | 6. Verified by decide in Lean.

3.3 The Case k = 2

Theorem 3.3. We have divides_prod(2, 2480), i.e.,

2480 · 2479 · 2478 |
(
4960

2480

)
.

Proof. The product is
2∏

i=0

(2480− i) = 2480× 2479× 2478 = 15 235 735 680.

The verification that this divides
(
4960
2480

)
is computationally intensive. We use native_decide in

Lean, which compiles the divisibility check to native code.

3.4 The Case k = 3

Theorem 3.4. We have divides_prod(3, 8178), i.e.,

8178 · 8177 · 8176 · 8175 |
(
16356

8178

)
.

Proof. The product is
3∏

i=0

(8178− i) = 8178× 8177× 8176× 8175 = 4 468 421 684 680 320.

Verified by native_decide in Lean using the efficient computable check described in Section 4.
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k Witness n Product
∏k

i=0(n− i)

0 1 1
1 2 2
2 2480 15 235 735 680
3 8178 4 468 421 684 680 320

Table 1: Witnesses for the divisibility condition for k = 0, 1, 2, 3, consistent with OEIS A375077.

4 Efficient Divisibility Check via p-adic Valuations

Direct computation of
(
2n
n

)
for large n is impractical due to the exponential growth of the binomial

coefficient. Instead, we employ a criterion based on p-adic valuations.

4.1 Legendre’s Formula

Definition 4.1 (p-adic Valuation of Factorials). For a prime p and a positive integer n, the
p-adic valuation of n!, denoted νp(n!), is given by Legendre’s formula:

νp(n!) =

∞∑
j=1

⌊
n

pj

⌋
=

n− sp(n)

p− 1
,

where sp(n) is the sum of the digits of n in base p.

Lemma 4.2. The function valuation_factorial defined by

def valuation_factorial_aux (p : ) (hp : 2 p) (m : ) (acc : ) : :=
if h : m < p then acc
else valuation_factorial_aux p hp (m / p) (acc + m / p)

correctly computes νp(m!) when initialized with acc = 0.

Proof. By strong induction on m. The recursion terminates since m/p < m for m ≥ p and p ≥ 2.
The correctness follows from the identity

νp(m!) =

⌊
m

p

⌋
+ νp

(⌊
m

p

⌋
!

)
.

Formally verified in Lean as valuation_factorial_eq.

4.2 Valuation of Central Binomial Coefficients

Definition 4.3 (p-adic Valuation of Central Binomial Coefficients). For a prime p and a positive
integer n, the p-adic valuation of

(
2n
n

)
is

νp

((
2n

n

))
= νp((2n)!)− 2νp(n!).

Lemma 4.4. The function valuation_centralBinom correctly computes νp
((

2n
n

))
.

Proof. By the formula
(
2n
n

)
= (2n)!

(n!)2
and the properties of p-adic valuations. Formally verified in

Lean as valuation_centralBinom_eq.
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4.3 The Efficient Check

Theorem 4.5 (Divisibility Criterion). Let a, b be positive integers. Then a | b if and only if
νp(a) ≤ νp(b) for all primes p.

Proof. This follows from the fundamental theorem of arithmetic: a | b if and only if the fac-
torization of a is “contained” in that of b, which is equivalent to the stated inequality for all
primes.

Corollary 4.6. To check whether
∏k

i=0(n − i) |
(
2n
n

)
, it suffices to verify that for each prime p

dividing the product,

νp

(
k∏

i=0

(n− i)

)
≤ νp

((
2n

n

))
.

Definition 4.7 (Computable Divisibility Check). The function check_divides_computable is
defined as:

def check_divides_computable (k n : ) : Bool :=
let prod := (List.range (k + 1)).foldl (fun acc i => acc * (n - i)) 1
if prod == 0 then false else
let factors := prod.primeFactorsList
factors.all (fun p =>

factors.count p valuation_centralBinom_exec p n)

Theorem 4.8. For all k, n ∈ N, if check_divides_computable k n = true, then divides_prod(k, n)
holds.

Proof. The function computes the prime factorization of the product and checks that each prime’s
multiplicity in the product does not exceed its multiplicity in

(
2n
n

)
. By Theorem 4.5, this implies

divisibility. Formally verified in Lean as check_divides_computable_correct.

5 Formal Verification

All theorems in this paper have been formally verified in the Lean 4 proof assistant (version
4.24.0) using the Mathlib library (commit f897ebcf). The formalization includes:

• Definition of the divisibility condition: divides_prod.

• Naive search functions: find_n, find_witness.

• Efficient valuation computations: valuation_factorial, valuation_centralBinom.

• Correctness proofs: valuation_factorial_eq, valuation_centralBinom_eq.

• The computable divisibility check: check_divides_computable.

• Correctness of the check: check_divides_computable_correct.

• Witness theorems: witness_0, witness_1, witness_2, witness_3.

The verification of witness_2 and witness_3 uses native_decide, which compiles the
Boolean check to native code for efficient execution.
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6 Conclusion

We have formally verified the existence of witnesses for the Erdős–Graham divisibility condition
for k = 0, 1, 2, 3. The witnesses are n = 1, 2, 2480, 8178 respectively, consistent with the OEIS
sequence A375077.

The key technical contribution is the implementation and correctness proof of an efficient
divisibility check based on p-adic valuations. This approach avoids the computation of astro-
nomically large binomial coefficients by reducing the problem to comparing prime factorization
exponents.

The general conjecture—that for every k there exists such an n—remains open. Our for-
malization provides a verified computational framework that could be extended to search for
witnesses for larger values of k.
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