

Divisibility of Central Binomial Coefficients by Falling Factorials: Formal Verification in Lean 4

Naoki Takata

January 11, 2026

Abstract

We study the divisibility condition asking whether, for each non-negative integer k , there exists a positive integer n such that the product $\prod_{i=0}^k (n-i)$ divides the central binomial coefficient $\binom{2n}{n}$. We formalize this problem in Lean 4 and provide constructive proofs for $k = 0, 1, 2, 3$ by exhibiting explicit witnesses: $n = 1, 2, 2480, 8178$ respectively. To verify the cases $k = 2$ and $k = 3$, we implement an efficient divisibility check based on p -adic valuations and Legendre's formula, and prove its correctness. All results have been formally verified in the Lean 4 proof assistant using the Mathlib library.

1 Introduction

The central binomial coefficients $\binom{2n}{n}$ possess remarkable divisibility properties that have been studied extensively in combinatorics and number theory. A classical result states that $n+1$ always divides $\binom{2n}{n}$; indeed, the quotient

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

is the n -th Catalan number. However, divisibility by n itself is considerably rarer.

Erdős and Graham posed the following natural question:

Conjecture 1.1 (Erdős–Graham). For every non-negative integer k , there exists a positive integer $n > k$ such that

$$\prod_{i=0}^k (n-i) \mid \binom{2n}{n}.$$

Pomerance [1] made significant progress on related problems. He showed that for any fixed $k \geq 0$, there are infinitely many n such that $(n-k) \mid \binom{2n}{n}$, although the set of such n has upper density less than $1/3$. Pomerance also proved that the set of n for which $\prod_{i=1}^k (n+i) \mid \binom{2n}{n}$ has density 1.

The smallest values of n satisfying the divisibility condition for each k are recorded in the OEIS as sequence A375077 [2].

In this paper, we provide a formal verification of the existence of witnesses for small values of k , using the Lean 4 proof assistant and the Mathlib library.

2 The Divisibility Condition

Definition 2.1 (Divisibility Condition). For non-negative integers k and n with $n > k$, we define the predicate

$$\text{divides_prod}(k, n) \iff \prod_{i=0}^k (n-i) \mid \binom{2n}{n}.$$

Remark 2.2. The product $\prod_{i=0}^k (n-i) = n(n-1)(n-2) \cdots (n-k)$ is the falling factorial $(n)_{k+1}$, which counts the number of ways to arrange $k+1$ distinct objects chosen from n objects.

Remark 2.3. For $n > k$, all factors in the product are positive, so $\prod_{i=0}^k (n-i) > 0$.

3 Witnesses for Small Values of k

We now present the witnesses that satisfy the divisibility condition for $k = 0, 1, 2, 3$.

3.1 The Case $k = 0$

Theorem 3.1. *We have $\text{divides_prod}(0, 1)$, i.e., $1 \mid \binom{2}{1}$.*

Proof. The product $\prod_{i=0}^0 (1-i) = 1$, and 1 divides any integer. This is verified by the `one_dvd` lemma in Lean. \square

3.2 The Case $k = 1$

Theorem 3.2. *We have $\text{divides_prod}(1, 2)$, i.e., $2 \cdot 1 \mid \binom{4}{2}$.*

Proof. The product is $\prod_{i=0}^1 (2-i) = 2 \cdot 1 = 2$. The central binomial coefficient is $\binom{4}{2} = 6$. Since $6 = 2 \cdot 3$, we have $2 \mid 6$. Verified by `decide` in Lean. \square

3.3 The Case $k = 2$

Theorem 3.3. *We have $\text{divides_prod}(2, 2480)$, i.e.,*

$$2480 \cdot 2479 \cdot 2478 \mid \binom{4960}{2480}.$$

Proof. The product is

$$\prod_{i=0}^2 (2480-i) = 2480 \times 2479 \times 2478 = 15\,235\,735\,680.$$

The verification that this divides $\binom{4960}{2480}$ is computationally intensive. We use `native_decide` in Lean, which compiles the divisibility check to native code. \square

3.4 The Case $k = 3$

Theorem 3.4. *We have $\text{divides_prod}(3, 8178)$, i.e.,*

$$8178 \cdot 8177 \cdot 8176 \cdot 8175 \mid \binom{16356}{8178}.$$

Proof. The product is

$$\prod_{i=0}^3 (8178-i) = 8178 \times 8177 \times 8176 \times 8175 = 4\,468\,421\,684\,680\,320.$$

Verified by `native_decide` in Lean using the efficient computable check described in Section 4. \square

k	Witness n	Product $\prod_{i=0}^k (n - i)$
0	1	1
1	2	2
2	2480	15 235 735 680
3	8178	4 468 421 684 680 320

Table 1: Witnesses for the divisibility condition for $k = 0, 1, 2, 3$, consistent with OEIS A375077.

4 Efficient Divisibility Check via p -adic Valuations

Direct computation of $\binom{2n}{n}$ for large n is impractical due to the exponential growth of the binomial coefficient. Instead, we employ a criterion based on p -adic valuations.

4.1 Legendre's Formula

Definition 4.1 (p -adic Valuation of Factorials). For a prime p and a positive integer n , the p -adic valuation of $n!$, denoted $\nu_p(n!)$, is given by Legendre's formula:

$$\nu_p(n!) = \sum_{j=1}^{\infty} \left\lfloor \frac{n}{p^j} \right\rfloor = \frac{n - s_p(n)}{p - 1},$$

where $s_p(n)$ is the sum of the digits of n in base p .

Lemma 4.2. *The function `valuation_factorial` defined by*

```
def valuation_factorial_aux (p : ) (hp : 2  p) (m : ) (acc : ) :  :=
  if h : m < p then acc
  else valuation_factorial_aux p hp (m / p) (acc + m / p)
```

correctly computes $\nu_p(m!)$ when initialized with $acc = 0$.

Proof. By strong induction on m . The recursion terminates since $m/p < m$ for $m \geq p$ and $p \geq 2$. The correctness follows from the identity

$$\nu_p(m!) = \left\lfloor \frac{m}{p} \right\rfloor + \nu_p \left(\left\lfloor \frac{m}{p} \right\rfloor ! \right).$$

Formally verified in Lean as `valuation_factorial_eq`. □

4.2 Valuation of Central Binomial Coefficients

Definition 4.3 (p -adic Valuation of Central Binomial Coefficients). For a prime p and a positive integer n , the p -adic valuation of $\binom{2n}{n}$ is

$$\nu_p \left(\binom{2n}{n} \right) = \nu_p((2n)!) - 2\nu_p(n!).$$

Lemma 4.4. *The function `valuation_centralBinom` correctly computes $\nu_p \left(\binom{2n}{n} \right)$.*

Proof. By the formula $\binom{2n}{n} = \frac{(2n)!}{(n!)^2}$ and the properties of p -adic valuations. Formally verified in Lean as `valuation_centralBinom_eq`. □

4.3 The Efficient Check

Theorem 4.5 (Divisibility Criterion). *Let a, b be positive integers. Then $a \mid b$ if and only if $\nu_p(a) \leq \nu_p(b)$ for all primes p .*

Proof. This follows from the fundamental theorem of arithmetic: $a \mid b$ if and only if the factorization of a is “contained” in that of b , which is equivalent to the stated inequality for all primes. \square

Corollary 4.6. *To check whether $\prod_{i=0}^k (n-i) \mid \binom{2n}{n}$, it suffices to verify that for each prime p dividing the product,*

$$\nu_p \left(\prod_{i=0}^k (n-i) \right) \leq \nu_p \left(\binom{2n}{n} \right).$$

Definition 4.7 (Computable Divisibility Check). The function `check_divides_computable` is defined as:

```
def check_divides_computable (k n : ) : Bool :=
let prod := (List.range (k + 1)).foldl (fun acc i => acc * (n - i)) 1
if prod == 0 then false else
let factors := prod.primeFactorsList
factors.all (fun p =>
  factors.count p valuation_centralBinom_exec p n)
```

Theorem 4.8. *For all $k, n \in \mathbb{N}$, if `check_divides_computable k n = true`, then `divides_prod(k, n)` holds.*

Proof. The function computes the prime factorization of the product and checks that each prime’s multiplicity in the product does not exceed its multiplicity in $\binom{2n}{n}$. By Theorem 4.5, this implies divisibility. Formally verified in Lean as `check_divides_computable_correct`. \square

5 Formal Verification

All theorems in this paper have been formally verified in the Lean 4 proof assistant (version 4.24.0) using the Mathlib library (commit `f897ebcf`). The formalization includes:

- Definition of the divisibility condition: `divides_prod`.
- Naive search functions: `find_n`, `find_witness`.
- Efficient valuation computations: `valuation_factorial`, `valuation_centralBinom`.
- Correctness proofs: `valuation_factorial_eq`, `valuation_centralBinom_eq`.
- The computable divisibility check: `check_divides_computable`.
- Correctness of the check: `check_divides_computable_correct`.
- Witness theorems: `witness_0`, `witness_1`, `witness_2`, `witness_3`.

The verification of `witness_2` and `witness_3` uses `native_decide`, which compiles the Boolean check to native code for efficient execution.

6 Conclusion

We have formally verified the existence of witnesses for the Erdős–Graham divisibility condition for $k = 0, 1, 2, 3$. The witnesses are $n = 1, 2, 2480, 8178$ respectively, consistent with the OEIS sequence A375077.

The key technical contribution is the implementation and correctness proof of an efficient divisibility check based on p -adic valuations. This approach avoids the computation of astronomically large binomial coefficients by reducing the problem to comparing prime factorization exponents.

The general conjecture—that for every k there exists such an n —remains open. Our formalization provides a verified computational framework that could be extended to search for witnesses for larger values of k .

Acknowledgments

The formalization was developed using the Mathlib library maintained by the Lean community.

References

- [1] C. Pomerance, *Divisors of the middle binomial coefficient*, American Mathematical Monthly, 122(7):636–644, 2015.
- [2] OEIS Foundation Inc., *The On-Line Encyclopedia of Integer Sequences*, Sequence A375077, <https://oeis.org/A375077>, 2024.
- [3] The Mathlib Community, *Mathlib: The Lean mathematical library*, <https://github.com/leanprover-community/mathlib4>, 2024.
- [4] L. de Moura and S. Ullrich, *The Lean 4 theorem prover and programming language*, in Automated Deduction – CADE 28, pp. 625–635, Springer, 2021.