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Abstract

We study the function g(n), defined as the minimal cardinality of a subset A C {0,1,...,n}
such that every element of {0,1,...,n} can be expressed as the sum of two elements of A. We
establish an upper bound g(n) < 2/n+2 using a construction based on the Mrose-Rohrbach
method, and a lower bound g(n) > v/2n — 1 via a counting argument. These bounds confirm
that g(n) ~ 2/n asymptotically. All results have been formally verified in the Lean 4 proof
assistant using the Mathlib library.

1 Introduction

The problem of finding minimal additive bases has a rich history in additive combinatorics.
Given a positive integer n, we seek the smallest subset A of {0,1,...,n} such that every element
in this range can be represented as a sum of two elements from A. This is known as the postage
stamp problem or the Rohrbach problem for bases of order 2.

Definition 1.1. For a finite set A C N, we define the sumset A+ A as
A+A:={a+b:abe A}
We say that A is an additive basis of order 2 for {0,1,...,n} if {0,1,...,n} C A+ A.
Definition 1.2. We define the function g : N — N by
g(n) == min{|A| : A C{0,1,...,n} and {0,1,...,n} C A+ A}.
The main results of this paper are the following bounds:

Theorem 1.3 (Upper Bound). For all n € N, we have

g(n) < 2v/n+2.

Theorem 1.4 (Lower Bound). For all n € N, we have
g(n) > v2n—1.

Corollary 1.5. The function g(n) satisfies g(n) ~ 2y/n as n — oo.

2 Upper Bound: The Mrose-Rohrbach Construction

To prove the upper bound, we construct an explicit additive basis. The construction is based on
the classical work of Rohrbach [I] and Mrose [2].



Definition 2.1 (Candidate Set). For n > 1, let m := [\/n] and K := [n/m] — 1. We define the
candidate set as
Ap:={0,1,...,m}U{0,m,2m, ..., Km}.

For n = 0, we set Ag := {0}.

The candidate set consists of two parts:

o A “small” set B :={0,1,...,m} containing all residues modulo m.

o A “large” set C' :={0,m,2m, ..., Km} containing multiples of m up to approximately n.
Lemma 2.2. For all n € N, we have A, C {0,1,...,n}.

Proof. For n = 0, this is trivial. For n > 1, elements of {0,1,...,m} are at most \/n < n. For
elements km with k < K, we have
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kmgKm:GEW—l>-m§7n+m -m—m=n+m—-1—-m<n+1.
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Thus km < n for all k < K. O
Lemma 2.3. For alln € N, the set A, is an additive basis of order 2 for {0,1,...,n}.

Proof. Let x € {0,1,...,n}. Write ¢ = gm + r where ¢ = |z/m| and r = 2 mod m.
Ifg<K,thengmeCandre B,sox=gm+re A, + A,.
If ¢ > K, we show that x = Km + m. Since ¢ > K and x < n, we have

(K+1m<gm <z <n.

But K = [n/m] — 1 implies (K + 1)m > n. Combined with z < n, we get x = (K + 1)m
Km +m. Since Km € C and m € B, we have x € A, + A,.

Ol

Lemma 2.4. For all n € N, we have |A,| < 2y/n + 2.

Proof. For n =0, we have |4g| =1 < 2.
For n > 1, note that |[B| =m + 1 and |C| = K + 1. The sets B and C overlap at {0}, so by
inclusion-exclusion:

[Anl =Bl +|C] = [BNC| < (m+ 1)+ (K+1)-1=m+K+1

Since m = |/n] < +/n and

we obtain
|An] < Vn+vnd+1=2yn+1<2vn+2.
O

Proof of Theorem[I.5 By Lemmas , and , the set A,, is an additive basis for {0, 1,...,n}
with |A,| < 2y/n+ 2. Therefore g(n) < |A,| < 2v/n+ 2. O



3 Lower Bound: A Counting Argument

The lower bound follows from a simple counting argument based on the size of sumsets.

Lemma 3.1. For any finite set A C N with |A| = k, we have

k(k+1
At A < HETL
2
Proof. Let A = {a1,as2,...,a,} with a1 < ag < --- < aj. Consider the sums a; + a; with i < j.

These are pairwise distinct because if a; +a; = ay +aj with i < j and ¢/ < j/, then by the strict
monotonicity of the sequence, we must have (,7) = (¢, j).

The number of pairs (i,7) with 1 <i < j <kis (k;rl) = @
Since every element of A+ A can be written as a;+a; for some 7 < j, and these representations

are injective (by the strict ordering), we have |A + A| < w O]
Proof of Theorem|[1.J] Suppose A is an additive basis of order 2 for {0,1,...,n} with |A| = k.
Then:

k(k + 1
n+1—|{0,1,...,n}|§\A+A!§(;).

Thus k(k+1) > 2(n+1) > 2n, which implies k*+k > 2n,so k > /2n + 1/4—1/2 > /2n—1.
Since k is an integer and k > v/2n — 1, we have g(n) = k > [v2n — 1], and in particular
g(n) > v2n —1. O

4 Computational Results

We have computed g(n) for small values of n by exhaustive search. The results are shown in

Table [

n |01 23 456 7 89
gn) |1 2 2 3 3 4 4 4 4 5

n |10 11 12 13 14 15 16 17 18 19
gm)[5 5 5 6 6 6 6 T T 7

Table 1: Computed values of g(n) for n =0,...,19.

We have also verified specific upper bounds:
e ¢(30) < 10, achieved by the set A ={0,1,2,3,7,11,15,19,23,27}.

e g(42) <12, achieved by the candidate set construction.

5 The Mrose Construction
For larger values, the Mrose construction provides an efficient additive basis. Define:

B:={0,1,...,a},
C:={0,d,2d,...,¢d} whered=a+1,
D :={0,e,2e,...,me} wheree=~0d+a+ 1.



The Mrose set is A := BUC U D. With appropriate choices of parameters (e.g., £ = a and
m = 2a?), this construction achieves:

|A] < 2a* + 2a + 3.

This provides additive bases for ranges up to approximately 2a*, giving an asymptotic im-
provement for constructing efficient bases.

6 Formal Verification

All theorems in this paper have been formally verified in the Lean 4 proof assistant (version
4.24.0) using the Mathlib library (commit £897ebcf). The formalization includes:

e Definitions of additive bases and the function g(n).
e Proofs of the upper bound g(n) < 2y/n + 2.

e Proofs of the lower bound g(n) > v/2n — 1.

e Verified computations for specific values.

The Lean source code is available in the accompanying file 791_aristotle.lean.

7 Conclusion

We have established that the minimal size g(n) of an additive basis of order 2 for {0,1,...,n}
satisfies

V2n —1<g(n) < 2yn+2.

This confirms the asymptotic behavior g(n) ~ 2v/n. The lower bound constant /2 ~ 1.414
and the upper bound constant 2 bracket the true asymptotic constant. Determining the exact
asymptotic constant remains an open problem, though it is generally believed to be 2.
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