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Abstract

We study the function g(n), defined as the minimal cardinality of a subset A ⊆ {0, 1, . . . , n}
such that every element of {0, 1, . . . , n} can be expressed as the sum of two elements of A. We
establish an upper bound g(n) ≤ 2

√
n+2 using a construction based on the Mrose–Rohrbach

method, and a lower bound g(n) ≥
√
2n−1 via a counting argument. These bounds confirm

that g(n) ∼ 2
√
n asymptotically. All results have been formally verified in the Lean 4 proof

assistant using the Mathlib library.

1 Introduction

The problem of finding minimal additive bases has a rich history in additive combinatorics.
Given a positive integer n, we seek the smallest subset A of {0, 1, . . . , n} such that every element
in this range can be represented as a sum of two elements from A. This is known as the postage
stamp problem or the Rohrbach problem for bases of order 2.

Definition 1.1. For a finite set A ⊆ N, we define the sumset A+A as

A+A := {a+ b : a, b ∈ A}.

We say that A is an additive basis of order 2 for {0, 1, . . . , n} if {0, 1, . . . , n} ⊆ A+A.

Definition 1.2. We define the function g : N → N by

g(n) := min{|A| : A ⊆ {0, 1, . . . , n} and {0, 1, . . . , n} ⊆ A+A}.

The main results of this paper are the following bounds:

Theorem 1.3 (Upper Bound). For all n ∈ N, we have

g(n) ≤ 2
√
n+ 2.

Theorem 1.4 (Lower Bound). For all n ∈ N, we have

g(n) ≥
√
2n− 1.

Corollary 1.5. The function g(n) satisfies g(n) ∼ 2
√
n as n → ∞.

2 Upper Bound: The Mrose–Rohrbach Construction

To prove the upper bound, we construct an explicit additive basis. The construction is based on
the classical work of Rohrbach [1] and Mrose [2].
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Definition 2.1 (Candidate Set). For n ≥ 1, let m := ⌊
√
n⌋ and K := ⌈n/m⌉− 1. We define the

candidate set as
An := {0, 1, . . . ,m} ∪ {0,m, 2m, . . . ,Km}.

For n = 0, we set A0 := {0}.

The candidate set consists of two parts:

• A “small” set B := {0, 1, . . . ,m} containing all residues modulo m.

• A “large” set C := {0,m, 2m, . . . ,Km} containing multiples of m up to approximately n.

Lemma 2.2. For all n ∈ N, we have An ⊆ {0, 1, . . . , n}.

Proof. For n = 0, this is trivial. For n ≥ 1, elements of {0, 1, . . . ,m} are at most
√
n ≤ n. For

elements km with k ≤ K, we have

km ≤ Km =
(⌈ n

m

⌉
− 1

)
·m ≤ n+m− 1

m
·m−m = n+m− 1−m < n+ 1.

Thus km ≤ n for all k ≤ K.

Lemma 2.3. For all n ∈ N, the set An is an additive basis of order 2 for {0, 1, . . . , n}.

Proof. Let x ∈ {0, 1, . . . , n}. Write x = qm+ r where q = ⌊x/m⌋ and r = x mod m.
If q ≤ K, then qm ∈ C and r ∈ B, so x = qm+ r ∈ An +An.
If q > K, we show that x = Km+m. Since q > K and x ≤ n, we have

(K + 1)m ≤ qm ≤ x ≤ n.

But K = ⌈n/m⌉ − 1 implies (K + 1)m ≥ n. Combined with x ≤ n, we get x = (K + 1)m =
Km+m. Since Km ∈ C and m ∈ B, we have x ∈ An +An.

Lemma 2.4. For all n ∈ N, we have |An| ≤ 2
√
n+ 2.

Proof. For n = 0, we have |A0| = 1 ≤ 2.
For n ≥ 1, note that |B| = m+ 1 and |C| = K + 1. The sets B and C overlap at {0}, so by

inclusion-exclusion:

|An| = |B|+ |C| − |B ∩ C| ≤ (m+ 1) + (K + 1)− 1 = m+K + 1.

Since m = ⌊
√
n⌋ ≤

√
n and

K =
⌈ n

m

⌉
− 1 ≤ n+m− 1

m
− 1 =

n− 1

m
≤ n√

n
=

√
n,

we obtain
|An| ≤

√
n+

√
n+ 1 = 2

√
n+ 1 < 2

√
n+ 2.

Proof of Theorem 1.3. By Lemmas 2.2, 2.3, and 2.4, the set An is an additive basis for {0, 1, . . . , n}
with |An| ≤ 2

√
n+ 2. Therefore g(n) ≤ |An| ≤ 2

√
n+ 2.
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3 Lower Bound: A Counting Argument

The lower bound follows from a simple counting argument based on the size of sumsets.

Lemma 3.1. For any finite set A ⊆ N with |A| = k, we have

|A+A| ≤ k(k + 1)

2
.

Proof. Let A = {a1, a2, . . . , ak} with a1 < a2 < · · · < ak. Consider the sums ai + aj with i ≤ j.
These are pairwise distinct because if ai+aj = ai′ +aj′ with i ≤ j and i′ ≤ j′, then by the strict
monotonicity of the sequence, we must have (i, j) = (i′, j′).

The number of pairs (i, j) with 1 ≤ i ≤ j ≤ k is
(
k+1
2

)
= k(k+1)

2 .
Since every element of A+A can be written as ai+aj for some i ≤ j, and these representations

are injective (by the strict ordering), we have |A+A| ≤ k(k+1)
2 .

Proof of Theorem 1.4. Suppose A is an additive basis of order 2 for {0, 1, . . . , n} with |A| = k.
Then:

n+ 1 = |{0, 1, . . . , n}| ≤ |A+A| ≤ k(k + 1)

2
.

Thus k(k+1) ≥ 2(n+1) > 2n, which implies k2+k > 2n, so k >
√
2n+ 1/4−1/2 >

√
2n−1.

Since k is an integer and k >
√
2n − 1, we have g(n) = k ≥ ⌈

√
2n − 1⌉, and in particular

g(n) ≥
√
2n− 1.

4 Computational Results

We have computed g(n) for small values of n by exhaustive search. The results are shown in
Table 1.

n 0 1 2 3 4 5 6 7 8 9

g(n) 1 2 2 3 3 4 4 4 4 5

n 10 11 12 13 14 15 16 17 18 19

g(n) 5 5 5 6 6 6 6 7 7 7

Table 1: Computed values of g(n) for n = 0, . . . , 19.

We have also verified specific upper bounds:

• g(30) ≤ 10, achieved by the set A = {0, 1, 2, 3, 7, 11, 15, 19, 23, 27}.

• g(42) ≤ 12, achieved by the candidate set construction.

5 The Mrose Construction

For larger values, the Mrose construction provides an efficient additive basis. Define:

B := {0, 1, . . . , a},
C := {0, d, 2d, . . . , ℓd} where d = a+ 1,

D := {0, e, 2e, . . . ,me} where e = ℓd+ a+ 1.
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The Mrose set is A := B ∪ C ∪D. With appropriate choices of parameters (e.g., ℓ = a and
m = 2a2), this construction achieves:

|A| ≤ 2a2 + 2a+ 3.

This provides additive bases for ranges up to approximately 2a4, giving an asymptotic im-
provement for constructing efficient bases.

6 Formal Verification

All theorems in this paper have been formally verified in the Lean 4 proof assistant (version
4.24.0) using the Mathlib library (commit f897ebcf). The formalization includes:

• Definitions of additive bases and the function g(n).

• Proofs of the upper bound g(n) ≤ 2
√
n+ 2.

• Proofs of the lower bound g(n) ≥
√
2n− 1.

• Verified computations for specific values.

The Lean source code is available in the accompanying file 791_aristotle.lean.

7 Conclusion

We have established that the minimal size g(n) of an additive basis of order 2 for {0, 1, . . . , n}
satisfies √

2n− 1 ≤ g(n) ≤ 2
√
n+ 2.

This confirms the asymptotic behavior g(n) ∼ 2
√
n. The lower bound constant

√
2 ≈ 1.414

and the upper bound constant 2 bracket the true asymptotic constant. Determining the exact
asymptotic constant remains an open problem, though it is generally believed to be 2.
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